Emerging Trends in CV Flow Visualization
Partho P. Sengupta, Gianni Pedrizzetti, Philip J. Kilner, Arash Kheradvar, Tino Ebbers, Giovanni Tonti, Alan G. Fraser, and Jagat Narula

J. Am. Coll. Cardiol. Img. 2012;5;305-316
doi:10.1016/j.jcmt.2012.01.003

This information is current as of March 19, 2012
The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://imaging.onlinejacc.org/cgi/content/full/5/3/305
STATE-OF-THE-ART PAPER

Emerging Trends in CV Flow Visualization

Partho P. Sengupta, MD, DM,* Gianni Pedrizzetti, Ph.D,† Philip J. Kilner, MD‡ Arash Kheradvar, MD, Ph.D,§ Tino Ebbers, Ph.D,¶ Giovanni Tonti, MD,¶ Alan G. Fraser, MB,# Jagat Narula, MD, Ph.D*

New York, New York; Trieste, Italy; London, United Kingdom; Irvine, California; Linköping, Sweden; Sulmona (AQ), Italy; and Cardiff, United Kingdom

CME Objective for This Article: At the end of this activity the reader should be able to: 1) understand relevant concepts in cardiac fluid mechanics, including the emergence of rotation in flow and the variables that delineate vortical structures; 2) elaborate on the main methods developed to image and visualize multidirectional cardiovascular flow; 3) develop dedicated imaging protocols for particle imaging velocimetry; and 4) discuss the potential clinical applications and technical challenges of determining multidirectional cardiovascular flow.
Emerging Trends in CV Flow Visualization

Blood flow patterns are closely linked to the morphology and function of the cardiovascular system. These patterns reflect the exceptional adaptability of the cardiovascular system to maintain normal blood circulation under a wide range of workloads. Accurate retrieval and display of flow-related information remains a challenge because of the processes involved in mapping the flow velocity fields within specific chambers of the heart. We review the potentials and pitfalls of current approaches for blood flow visualization, with an emphasis on acquisition, display, and analysis of multidirectional flow. This document is divided into 3 sections. First, we provide a descriptive outline of the relevant concepts in cardiac fluid mechanics, including the emergence of rotation in flow and the variables that delineate vortical structures. Second, we elaborate on the main methods developed to image and visualize multidirectional cardiovascular flow, which are mainly based on cardiac magnetic resonance, ultrasound Doppler, and contrast particle imaging velocimetry, with recommendations for developing dedicated imaging protocols. Finally, we discuss the potential clinical applications and technical challenges with suggestions for further investigations. (J Am Coll Cardiol Img 2012;5:305–16) © 2012 by the American College of Cardiology Foundation

Flow through the heart interacts with the mobile contours of the myocardium, valve, and vessels. Blood flowing through the sequence of compartments is subject to changes in direction and luminal diameter, and as a consequence, flow is multidirectional and vortical with a tendency to curl or spin in the cardiac chambers during various phases of the cardiac cycle (1). The valves, chamber geometry, and wall motion modify the flow patterns to produce a hemodynamic environment comprising normal or pathological adaptation. Therefore, analyzing the spatial and temporal distribution of blood flow in the cardiovascular system may provide diagnostic and prognostic information. However, acquiring and visualizing flow through the volumes of the heart cavity is a complex topic. Doppler echocardiography and cardiac magnetic resonance (CMR), in different ways, have been used to measure the velocities of the flow that is predominantly unidirectional while it passes through a valve, a jet, or an approximately cylindrical vessel segment. Recent technological innovations in imaging modalities and the emergence of flow visualization techniques have provided valuable opportunities for direct in vivo assessment of multidirectional blood flow. Analysis of the flow fields is associated with variables such as pressure differences, shear stresses, and energy dissipation. The display and measurement of such flow variables on a page or 2-dimensional (2D) computer screen can be challenging, and each variable calls for different types of analysis and representation. Therefore, there is a pressing need to guide and advance flow visualization techniques toward the development of consistent measurements and clinical applications (2).

Basic Principles in Cardiovascular Fluid Mechanics

Blood is a corpuscular material that behaves like a fluid and can be deformed throughout its volume. Its movements are powered and constrained by the movements of containing boundaries. Blood’s patterns of flow are subject, on the one hand, to the directional momentum of the streams entering and moving through the chambers and, on the other hand, to the slowing, frictional effect of the viscosity both relative to the boundaries as well as between streams, with different velocities sliding against one another within the volume. The liquid motion can be imagined as being composed of numerous flexible layers (laminae) sliding relative to each other (Fig. 1A).

Laminar flow, in which the directions of streamlines remain almost parallel to those of neighboring streamlines or boundaries, occurs in the smaller, more peripheral blood vessels, but it is not typical of flow through large vessels or the chambers of the heart. Laminar flow tends to become unstable, fragmenting and mixing with eddies and counter-eddies when its kinetic energy (which is proportional to the square of its velocity V) becomes large relative to its rate of energy dissipation (which is roughly proportional to $\nu V/D$, where D is the diameter of the vessel and ν is the kinematic viscosity). When this ratio, known as the Reynolds number ($Re = VD/\nu$), exceeds a critical value (approximately 2,500 for steady flow in a straight...
Blood flow velocities can be measured in any direction using the velocity-encoded CMR phase-contrast technique (4–6). Using the velocity-flow visualization using CMR.

Table 1 lists some of the advantages and disadvantages of each method.

Flow visualization using CMR. Using the velocity-encoded CMR phase-contrast technique (4–6), blood flow velocities can be measured in any direction without using contrast agents. By using bipolar gradients, the signal of the moving blood is in a phase that is proportional to its velocity. Although real-time phase-contrast CMR is possible for 2D measurements, better quality of data is obtained by combining the information from several heartbeats using prospective or retrospective electrocardiogram (ECG) gating. Retrospective ECG gating with time-resolved, through-plane, and 2D phase-contrast CMR is mostly used to obtain peak velocities or volumetric flow to determine the stroke volume. Using ECG and respiratory gating, the complete time-resolved, 3-dimensional (3D), and 3-directional velocity field can be measured over a volume that covers the complete heart or large vessels (7,8). This 3D cine phase-contrast CMR technique is popularly called 4-dimensional flow CMR. The acquisition time depends on several parameters: the region of interest, the location in the body, the spatial and temporal resolution, and the breathing pattern (9,10). Currently, cardiac blood flow can be measured with a spatial resolution of 3 mm

Vorticity (typically represented by the Greek letter ω) is a mathematical term that physically corresponds to (twice) the local angular velocity of a fluid particle. Although a vortex is a compact region characterized by the accumulation of vorticity (Fig. 1B), a shear layer (or a vortex layer) is an elongated layer of vorticity. In general, the spatial distribution of vorticity, as well as its development and evolution, can facilitate an understanding of the key features of blood motion in large vessels and heart chambers. Therefore, most fluid dynamic studies focus on the lifespan of vorticity, from its generation to its organization in the form of vortices, and to its dissipation.

Vorticity does not appear spontaneously in a flow field; it develops in the form of a shear layer adjacent to the tissue (boundary layer) as a consequence of the velocity difference between the fluid and the solid boundary. Where streamlines separate from the wall, the fluid tends to curl into a vortex or a cascade of vortices (Fig. 1C). Streamline separation and vortex formation are typical of the flow into the heart cavity from a vein or valve or from a narrow to a more dilated vessel segment. Examples include the flow into the carotid sinus and the flow beyond a heart valve or vascular stenosis (Fig. 1D). The presence of such formed vortices affects pressure distribution and shear stresses and is crucial for relating blood motion to pathology (3).

An expanded version of this section, along with assumptions used in numerical modeling, has been included in the online Appendix.

ABBREVIATIONS AND ACRONYMS

CMR	cardiac magnetic resonance
ECG	electrocardiogram
Echo-PIV	echocardiography particle imaging velocimetry
LV	left ventricular
LVOT	left ventricular outflow tract
PIV	particle imaging velocimetry
VFM	vector flow mapping
search or clinical questions to be addressed. There are trade-offs to be considered among acquisition time, spatial resolution, temporal resolution, signal-to-noise ratio, and the comprehensiveness of the data coverage. Routine breath-hold cine acquisitions using steady-state free precession allow some features of the flow to be visualized in 2D planes. Although not real-time, the local variations in the blood signal can show jet formations, associated para-jet shear, and at least an impression of small-scale flow instabilities within the larger streams. Importantly, cine imaging also depicts the myocardial, valve, and vessel wall dynamics that are inseparable from the flows they deliver and contain.

The methods and applications of such 4-dimensional velocity acquisition (9) are recommended for both displaying the relatively large-scale patterns of multidirectional blood flow that are consistently repeated from beat to beat as well as relating flows in different cardiovascular compartments to one another. However, these methods require relatively long acquisition times of about 8 to 25 min. Each reconstructed movie loop is not in real-time but represents flow that is effectively phase-averaged over hundreds of heart cycles, and, hence, the movie loop does not record any small-scale instabilities or other beat-to-beat variations in the flow. The multidirectional velocity data, although impressively comprehensive, may need to be supplemented by either more selective flow imaging at high temporal and spatial resolutions or computational fluid dynamic simulations to reach conclusions regarding small-scale and time-varying flow features. This solution may be important to improve the calculation of parameters such as fluid energy dissipation, fluid wall shear stresses, and the partitioning versus mixing of adjacent blood volumes or streams.

Flow visualization using echocardiography. Ultrasound flow visualization techniques, with high temporal resolution and relatively low cost, make it suitable for routine clinical use. Recent advances in imaging techniques for mapping flow using echocardiography techniques are discussed here.

COLOR DOPPLER ECHOCARDIOGRAPHY. Color flow was developed in the mid-1980s using multiple range-gated pulsed Doppler. In clinical practice, however, the technique has been used as a qualitative method for demonstrating abnormal flow patterns and superimposed turbulence. Color Doppler measures only axial velocities along the line of each ultrasonic beam. If it were possible to estimate the
Radial velocity component, which is directed at right angles relative to the axial velocity, then combining the axial and radial velocities would allow the true flow vector at each site to be calculated. The first method proposed to achieve this goal was crossbeam ultrasound (17). This technique uses an array of 3 transducers, with 2 acting as transmitters and the third acting as a receiver. All the transducers are focused on the same site but are positioned at slightly different insonating angles. This method has been proven to work both theoretically and in simple phantoms, but it has not been developed for routine clinical applications. More recently, the principle of measuring 2 velocities at the same site and across all the scan lines in the field of the color flow image. Although this method relies on nontrivial assumptions, VFM is often able to delineate the main features of left ventricular (LV) intracavitary flow (Fig. 4).

An analogous approach (20) uses speckle tracking to measure the radial velocity of endocardial wall motion around the left ventricle, achieved by applying the continuity equation in a way such that the resulting radial velocity matches the radial velocity at the wall. This technique involves separate acquisitions of the grey-scale data for the speckle tracking of the wall motion and of the color flow data for estimating the blood velocity. This technique has also been able to discriminate the major features of vortex flow within the left ventricle during the cardiac cycle, but the published images do not show small, low-velocity vortices.

All of these methods currently ignore through-plane flow in the third dimension. Based on the zero mean. Subsequently, the transverse velocity is computed assuming that such a vortical component must satisfy the continuity equation (mass conservation) from pixel to pixel, along each radius, and across all the scan lines in the field of the color flow image.
comparisons with phase-contrast magnetic resonance imaging in apical long-axis planes, the error introduced by this simplification is on the order of 15% for healthy hearts (20). In addition, the accuracy is necessarily dependent on the accuracy of the Doppler color data. Improving the basic color flow with an optimum Nyquist limit to reduce lower velocities from being filtered out and automating the process of de-aliasing the color data will be helpful in future development of these methods (21). Novel techniques for the reconstruction of the blood flow using 2D or 3D Doppler imaging are currently under investigation.

ECHOCARDIOGRAPHY PARTICLE IMAGING VELOCIMETRY. Particle image velocimetry (PIV) is a popular technique to characterize the flow field in fluid dynamics laboratories (22,23). When using PIV, the particle-seeded flow is typically illuminated with a light sheet generated by a pulsed laser. The particle patterns in the field are tracked frame by frame, and the displacement data are converted to velocity using the small time-frame between the illuminating laser pulses. It is important to understand that the PIV technique does not track individual particles; rather, it tracks the patterns produced by groups of particles. Ultrasound beams are used as the imaging source in echocardiography PIV (echo-PIV), which enables visualizing blood flow within an opaque cardiac chamber. The application of ultrasound-based PIV was first reported for imaging kaolin particles in the study of sediment-laden flow (24). After the introduction of ultrasound-based PIV, or echo-PIV as it is known in its current form, as a method for capturing digital B-mode images of contrast agent particles (25), the technique has been successfully explored in both experimental (26) and clinical (27) settings. A careful validation of the technique applied to the carotid flow was recently developed in the laboratory environment and included a clinical feasibility analysis and CMR comparison (28). Echo-PIV provides a tool to assess blood flow directions and streamlines (Fig. 5), map principal flow patterns, and define recirculating regions and vortices with reasonable confidence in a visually reproducible scheme (26).

Many of the limitations of echo-PIV are related to the limitations of current ultrasound technology. For example, the time interval between the 2 frames needs to be short for optimal cross-correlation, which can only be achieved by reducing the sector angle and depth variables. Current applications have mostly been developed for 2D flow tracking and for a sector width size of 45°. Flow can now be measured at a temporal resolution as high as 4 ms and with an effective spatial resolution of about 4 mm. Due to this high temporal resolution, the flow sequences for the phases of the cardiac cycle, including the brief intervals of isovolumetric contraction and relaxation, have been characterized (Online Videos 2 and 3). Although the echo-PIV technique seems to be a promising approach with qualitatively meaningful results, it does have several limitations. An experimental validation study revealed that, depending on the acquisition frame rate, high velocities can be underestimated, and the spatial resolution of current ultrasound imaging limits accurate imaging of the small-scale features of ventricular flow (26,27), which has implications when using echo-PIV for diagnostic purposes.

METHODOLOGICAL RECOMMENDATIONS. During 2D echocardiography, acquiring 3- or 5-chamber views is helpful for visualizing both the filling and the emptying flow patterns. The width of the ultrasound scans, imaging depth, and spatial and temporal settings have to be optimized to achieve the highest possible frame rate with a scan angle...
large enough to ensure that the entire blood pool is visualized. Echo-PIV requires a minimum frame rate of approximately 60 to 100 frames/s; otherwise, the higher velocities are underestimated (as a simple rule, the frame rate must be higher than the heart rate). Much higher frame rates (>150 frames/s) may be required to visualize transient flow patterns during the brief isovolumetric contraction period (Online Video 2). The flow pattern is better visualized with the tissue harmonic modality and by regulating the mechanical index according to the manufacturer’s recommendations; as a general rule, a single focal zone at the base of the left ventricle is preferable. The contrast agent must homogeneously fill the cavity for clear visualization of the swirling flow while avoiding both saturation and black areas. To obtain good results, it is preferable to acquire the loop during the dilution phase that follows the peak of bubble concentration using the contrast signal growth and plateau phases to adjust the time gain compensation curve, gain, and focal zone.

In vitro experiments and numerical simulations. Careful replication of the heart chambers and vasculature in vitro has significantly improved our understanding of the physics of blood flow (24,29–33). These models are mainly reconstructed from either anatomical castings or images acquired from CMR, computed tomography scanning, or echocardiography (29). PIV is commonly used to assess cardiovascular fluid dynamics in vitro, particularly for evaluating new imaging modalities (29,34–36), heart valves (32,37), and ventricular assist devices (38,39). One important consideration when using PIV to assess a cardiovascular event is the temporal resolution. The temporal...
resolution of conventional PIV systems that is appropriate for most fluid dynamics applications are about 15 velocity frames/s. These systems are not appropriate for assessing cardiovascular events, and due to their poor time resolution, they cannot capture most flow features in a consistent and reproducible fashion even if they are time-averaged over multiple cycles. Only laser systems with repetition rates around 1,000 Hz, together with correspondingly high-resolution, high-speed cameras, are legitimate for quantitative analyses of unsteady cardiovascular systems in vitro.

Numerical simulations attempt to imitate a dynamic behavior of a system often to predict the sequence of event. Numerical simulations for cardiovascular flow use a combination of computational methods, including medical imaging techniques for determining vascular geometry and techniques for representing the flow domain as a large number (typically millions) of discrete points when evaluating fluid properties. In principle, it is possible to simulate any flow by solving the mathematical laws governing fluid mechanics or by direct numerical simulations. However, it must be stressed that, despite the enormous progress that has been made in computing power, most cardiovascular flow problems remain challenging. Numerical simulations represent a powerful tool that can complement the clinical analyses of cardiovascular disease. These simulations can be used either when in vivo data are not measurable or as a predictive tool for therapeutic options.

Clinical Applications and Research Prioritization

The conventional indexes of cardiac performance usually do not reveal significant changes until there is overt dysfunction, which makes these indexes less effective for the early diagnosis and treatment of cardiac disease. Flow, instead, is immediately affected by changes in cardiac function. Therefore, analyzing the blood flow dynamics opens up new perspectives for our understanding of cardiovascular physiology and for developing very early diagnostic tools (Table 2). The clinical utility of this hypothesis still requires further studies, both to understand the added value over conventional approaches and to develop appropriate flow-based indexes for applications in various cardiac pathologies.

Cardiac function abnormalities. Changes in either the LV shape or contractility will alter the intraventricular flow patterns. In a normal heart, the asymmetric geometry of the left ventricle and the orientation of its valves favor vortex formation and automatic redirection of blood from the LV inflow to the outflow. This efficient arrangement avoids excessive regional wall stress and ensures an optimal LV pump performance. In patients with a dilated left ventricle, the transmitral flow is often directed along the free wall, which gives rise to a well-developed circular flow pattern that turns toward the septum and the outflow tract during diastole. At the end of diastole, blood located close to the left ventricular outflow tract (LVOT) in patients with a dilated left ventricle is directed more perpendicular
to the LVOT than in the normal left ventricle, in which the blood flow is more directed toward the LVOT (40). Blood flow in the left ventricle has been suggested to contain direct flow routes and recirculating flow patterns, all of which contribute to the efficiency of the pumping function (1,41–44). The presence of a physiological vortex formation process supports such flow routes, which avoids excess turbulence and energy dissipation. Moving further ahead, it can be hypothesized that a proper vortex formation process is associated with the heart’s ability to adapt to varying conditions whereas, in its absence, the flow may develop a disordered motion, improper redirection during contraction, and nonphysiological peak pressures. The relationship between abnormal vortex formation and the progression of LV remodeling and symptoms in patients with heart failure remains to be investigated.

Flow visualization may also be useful in understanding pathophysiological mechanisms in LV remodeling. One such mechanism includes, among others, the mechanism of outflow tract obstruction in patients with hypertrophic cardiomyopathy. In the normal left ventricle, the formation of a transmitral vortex helps to maintain the position of the mitral leaflets close to the posterior wall and assists in directing the upcoming systolic stream toward the outflow tract. In hypertrophic cardiomyopathy, however, the anterior displacement of the papillary muscles moves the entire mitral apparatus adjacent to the outflow tract, which reverses the direction of the transmitral vortex and promotes the anterior motion of the mitral leaflets during systole due to the creation of drag forces. This phenomenon requires further investigation (45,46).

Flow visualization may also have application in the assessment of cardiac dyssynchrony. Quantitatively evaluating cardiac efficiency by using intraventricular flow dynamic analysis before and after resynchronization may provide useful indicators of clinical severity and the eventual success of therapy. Moreover, the ability of the technique to discriminate the beat-to-beat changes in the cardiac vorticity and intracavitary pressure gradients could be used to fine-tune biventricular devices.

LV flow visualization can provide a novel and promising method to assess the continuum of systolic and diastolic function. Initiation of LV diastole is related to the release of the elastic energy stored during the previous systole, and this elastic energy generates suction and contributes to normal LV filling (47). Early diastolic suction that exists under physiological conditions may have greater roles during exercise and tachycardia. Therefore, the causal relationship between LV wall recoil, transmitral flow, and intraventricular pressure gradient demonstrates the importance in defining the performance of the left ventricle during diastole. Quantification of diastolic function and intraventricular pressure gradients using echocardiography is typically based on measuring the changes in the ventricular wall, such as the velocity of wall relaxation (48) and the pulse wave Doppler pattern of the velocity at the mitral tips. There is a need for studies that relate the well-validated parameters of diastolic function (i.e., τ, pressure–volume loops, the stress–strain ratio) to the morphological data of the resulting flow energetics. The formation of transmitral vortices is highly sensitive to the pressure gradient whether due to drop in LV pressure or increases in the left atrial pressure and, therefore, may be a sensitive marker of diastolic function. Conditions that interfere with the normal sequence of regional contraction and relaxation can be ex-

Table 2. Clinical Applications of Flow Visualization Techniques

<table>
<thead>
<tr>
<th>Clinical Condition</th>
<th>Potential Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV systolic function</td>
<td>Paths and kinetic energy changes of blood flowing into the left ventricle for understanding development and progression of dilated/hypertrophic LV remodeling, assessing stagnant flow and risk of thrombus formation, assessment of LV dyssynchrony, optimization of resynchronization therapy and assist devices</td>
</tr>
<tr>
<td>LV diastolic function</td>
<td>Transmural flow patterns and spatial distribution of intraventricular pressure gradients, shear stress, and kinetic energy</td>
</tr>
<tr>
<td>Atrial function</td>
<td>Flow features for stratifying risks of left atrial clot formation, efficiency of flow in congenital heart diseases, including Fontan circulation</td>
</tr>
<tr>
<td>Valvular diseases</td>
<td>Relationship of regurgitation jet on turbulence and energy dissipation, effects of valve repair and prosthetic replacement surgery on valvular flow direction and LV remodeling</td>
</tr>
<tr>
<td>Aorta</td>
<td>Relationship of flow characteristics and shear stress with risks of aortic atherosclerosis, risks of aortic dilation and dissection in Marfan syndrome, retrograde flow from descending aorta and risks of cerebral embolism, optimization of aortic reconstruction surgeries</td>
</tr>
<tr>
<td>Pulmonary artery</td>
<td>Characterization of flow features associated with pulmonary artery remodeling in pulmonary hypertension and thrombus formation</td>
</tr>
</tbody>
</table>

LV = left ventricular.
pected to alter early diastolic filling and the vortex formation process. Moreover, a proper characterization of the intraventricular fluid dynamics, energetics, and space-time distributions of pressure and shear stress may allow recognizing early functional changes before they provoke irreversible myocardial dysfunction.

Assessment of atrial function. Rather than being a simple conduit, the atria have also been shown to generate consistent blood flow patterns that are specific to the phase of the cardiac cycle (49). From a fluid dynamics perspective, the atrium and ventricle seem to be tightly linked, as are diastole and systole (40,44). Changes due to disease result in decreased efficiency and elevated turbulence intensity (40,44,50). The function of the right atrium has been explored in healthy volunteers (1,51) and in patients with Fontan circulation (52). The flow across the right side of the heart, in general, is complex, and knowledge of right heart fluid dynamics remains rather limited.

The valvular diseases. Any change to the mitral valve, whether due to disease or surgery, directly affects the LV flow pattern. Some of the problems associated with mitral valve prostheses that may be related to blood flow are platelet activation, thrombus formation, hemolysis, increased myocardial stress leading to LV hypertrophy, and remodeling. Regurgitant flow in mitral prolapse has been shown to result in highly disturbed left atrial flow with both vortices located in proximity to the regurgitant jet as well as elevated values of turbulent intensity in the left atrium during systole, which are related to the regurgitant volume (50). Clinical studies are required to understand the impact of valvular diseases and replacement surgery on unfavorable LV remodeling that has been suggested by numerical simulation (53). Such an understanding would enhance the therapeutic decision-making process and improve surgical procedures, particularly in cases of dysfunctional ventricles.

Controversies still exist regarding the role of the vortices that develop in the sinuses of Val-salva in both optimizing aortic valve closure and allowing coronary blood flow. Several studies of the downstream flow from prosthetic valves and aortic root surgeries have been published in the last 10 years (52,54,55). The impact of changes in valve and prosthesis geometry on intrinsic flow in the aortic sinuses and coronary flow remain to be investigated.

Aortic and vascular flow. Aortic blood flow patterns have been described in healthy volunteers (9,56). Studies of alterations in aortic blood flow patterns, particularly the vortex and swirl behaviors related to age, coronary artery disease, atherosclerosis, congenital abnormalities, surgical interventions, and pulmonary hypertension, have recently been reviewed (9). In addition to its enhanced insight into hemodynamics, 3D cine phase-contrast CMR has demonstrated its advantages in the clinical evaluation of aortic coarctation (57). Using 3D cine phase-contrast CMR, retrograde flow from complex plaques in the descending aorta can explain embolisms to all brain territories and the resulting strokes (58). Larger studies and follow-up imaging of patients with abnormal flow patterns are needed to further evaluate the associations that have been drawn between altered flow in the thoracic aorta and disease outcomes.

Conclusions

The development and validation of novel flow visualization techniques may enable clinical imaging and analysis of multidirectional flow in the cardiovascular system. The identification, verification, and interpretation of flow-related physiology in normal and abnormal states may provide additional/incremental insights into a range of cardiovascular diseases. With advances in imaging, the time is perhaps ripe for further research into the diagnostic and prognostic impact of intracardiac and vascular flow structure.

Acknowledgments

This paper was developed after the international meeting on cardiovascular fluid mechanics theory and investigative techniques held at University of Cagliari, Sardinia, Italy, June 27 to 29, 2011. The data presented, analyzed, and developed at the meeting were compiled as the consensus document.

Reprint requests and correspondence: Dr. Partho P. Sengupta or Dr. Jagat Narula, The Mount Sinai Medical Center, One Gustave L. Levy Place, PO Box 1030, New York, New York 10029. E-mail: Partho.Sengupta@mountsinai.org or narula@mountsinai.org.
REFERENCES

Key Words: contrast \bullet doppler \bullet echocardiography \bullet flow \bullet magnetic resonance \bullet vortex.

For supplementary information on this topic (including assumptions used in numerical modeling), and supplementary videos and their legends, please see the online version of this article.
TITLE: Emerging Trends in Cardiovascular Flow Visualization

AUTHORS: Partho P. Sengupta, MD, DM, Gianni Pedrizzetti, PhD, Philip J. Kilner, MD, Arash Kheradvar, MD, PhD, Tino Ebbers, PhD, Giovanni Tonti, MD, Alan G. Fraser, Jagat Narula, MD, PhD

APPENDIX

Basic Concepts (Expanded online version)

The distinctive property of fluids is the development of internal stresses in response to a relative velocity between nearby elements. This behavior is due to a property of fluids called viscosity causing a friction during the sliding between individual fluid elements. Given this frictional phenomenon, the mechanical energy used to deform the fluid elements is lost for dissipation and transformed into heat. In virtue of this, the natural way of fluid flowing is a balance between the energy gradient pushing the fluid from upstream to downstream and the energy dissipated during such motion. Like a river that has a higher energy uphill that is dissipated through friction at its bed, blood presents a pressure drop along the vessel that is balanced with wall shear stresses. Theoretically, the fluid moves along parallel laminas whose velocity is larger values at the center of the vessel and decreases for friction approaching the boundary.
The laminar type of flow is, however, not common. First, the laminar flow is unstable when its kinetic energy (proportional to the square of its velocity V) exceeds its ability to dissipate energy (roughly proportional to $\nu V/D$; where D is the diameter and ν is the kinematic viscosity that for blood is about 0.033 cm2/s). Thus when this ratio, known as the Reynolds number $Re=VD/\nu$, becomes larger than a critical value (that is around 2500 in steady flow in a circular duct) the laminar motion is unstable and the fluid becomes turbulent. The flow develops a swirling behavior that increases friction in order to reach a balance with the large injected energy. Turbulent flow are also not common in the circulatory system, a weak turbulence briefly appears just in the ascending Aorta, and sometime in large hearts, prevalently during the deceleration phases when friction needs to increase. More frequently, the flow develops vortices, jets, and swirling motion that, when present, have a fundamental impact on the fluid dynamics and its interaction with the surrounding tissues. In order properly evaluate such vortical flows it is useful to introduce a few fundamental driving concepts.

Vorticity is the key quantity in fluid dynamics; velocity alone is not able to evidence the underlying dynamical structure of a flow field, made of stresses, mixing, or vortices. Vorticity (typically indicated with the Greek letter ω) physically corresponds to (twice) the local angular velocity of a fluid particle but its spatial distribution is the actual skeleton of a flow field. A vortex, which is loosely described as a fluid structure that possesses circular or swirling motion, is more properly defined as compact region where vorticity has accumulated. A shear layer, that separates streams with different velocity, is actually a layer of vorticity, a vortex layer (Figure 1, panel B). Vortices and vortex layers are the fundamental structures in flow fields. Their different
three dimensional arrangements and combinations give rise to the complexities of all evolving flows.

Vorticity, however, cannot appear spontaneously within a flow; it develops at the wall only, in the form of a vortex layer due to the velocity difference between the outer flow and the fluid attached to the wall for viscous adherence. Such a *boundary layer* has a central role in fluid mechanics as it represents the unique possible source of vorticity and its detachment from the wall is the unique mechanism allowing vorticity to enter into the flow. The phenomenon of *boundary layer separation* occurs in consequence of a local deceleration of the flow, as it may be due to a vessel enlargement, a sharp turn or, in general, an adverse pressure gradient. When velocity decreases downstream, the boundary layer thickness tends to increase because of incompressibility. This emerging vorticity is strained by the higher velocity and enters into the flow as a tongue of vorticity that tends to roll-up into a compact vortex structure and eventually detaches from the original boundary layer. The Reynolds number, again, reflects the ratio of flow strength with viscous smoothing, therefore the higher *Re* the stronger and sharper the vortices are.

This *vortex formation* process is the natural phenomenon occurring from cardiac valves, or in vessels presenting significant flow decelerations, like sometime in the carotid sinus or in branching regions. Pathologic vortex formation develops from stenosis, when these are sharp enough, in aneurisms, or in consequence of surgeries affecting the flow. The process of boundary layer separation modifies the vorticity at the wall and therefore the distribution of wall shear stress that correlates with atherosclerosis. Formed vortices alter the distribution of pressure on
the surrounding tissues and energy dissipation; they can support or adverse to the proper redirection of flow paths. In any case, vortices profoundly influence the dynamics of the fluid and any flow realization involving vortices demands a careful analysis of their presence and impact.

Numerical Modeling

Numerical models are grounded on the assumption that a clinical problem can be expressed in mathematical terms; afterwards numerical techniques are invoked as solution methods. The mathematical formulation typically assumes that blood is a continuous material, an assumption that fails in small vessels or when exploring phenomena occurring at small scales where the corpuscular nature of blood cannot be neglected. Numerical approaches involving fluid-tissue interaction also require solving the equations for the surrounding soft tissues, like myocardium or valvular leaflets. Tissue mechanics introduces a problematic issue because the mechanical properties of the tissue are not highly variable, anisotropic and inhomogeneous, and they are not accessible for measurements in vivo. Finally, every solution of spatially extended problems (involving partial differential equations) crucially depends on the boundary conditions that, in turn, require a careful definition of the boundaries themselves. The accuracy of actual boundaries in numerical simulation are limited by the accuracy of imaging methods and therefore cannot include details (like taberculae, or geometrical details of cardiac valves) whose relevance must be preliminarily evaluated.